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The most general expression of the free energy in the disordered spherical model 
is obtained. Based on this expression the following are shown. (a) The ferromag- 
netic order in the translationally invariant spherical model is unstable against an 
arbitrarily small random field if d < 4. (b) Straightforward generalization of the 
spherical model to the disordered case for a finite-range interaction has some 
rather unnatural properties: the phase transition in the model exists even in one 
dimension, and even in the case of ferromagnetic interaction it does not vanish 
as a homogeneous external field is switched on and spontaneous magnetization 
is zero for T < T c. (c) For the ferromagnetic interaction, a modification of the 
disordered spherical model is proposed which does not have such properties and 
displays the behavior expected for the disordered ferromagnets. The paper also 
discusses the role of fluctuation (duster) effects and the structure of the 
spontaneous magnetization field for the disordered spherical model. The results 
essentially rest upon the spectral properties of random self-adjoint operators 
obtained by the author earlier and in the present paper. 

KEY WORDS: Spherical model; disordered systems; phase transitions; 
random operators. 

1. I N T R O D U C T I O N  

The past decade was characterized by  rising interest in  various disordered 

systems, disordered spin systems in particular.  The results ob ta ined  for such 
systems have become at present  a significant par t  of the magnet ic  phenom-  
ena theory. This in par t icular  has been  so because the s tudy of such systems 

turned out  to be closely related to certain fundamen ta l  problems of physics 
of magnet ism. However,  despite the m a n y  interest ing suggestions as well as 
approximate  and  numer ica l  calculat ions of this period, the theory of quite a 
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lot of phenomena remains essentially unclear. This primarily refers to phase 
transitions and critical phenomena which may take place in disordered spin 
systems, especially those where the interaction between spins is not positive. 
Among the latter, the most interesting are those in which the proportions of 
positive and negative values of the exchange integral are approximately 
equal, since, as is widely accepted, there may appear therein a low- 
temperature phase peculiar to disordered systems, namely, the spin glass. 

Yet, nontrivial, exactly solvable models and rigorous results in this 
area are rather few, numbering hardly more than some molecular field-type 
models. It is therefore reasonable to use generalization to the disordered 
case of the spherical modeP, one of the simplest models for magnets, which, 
unlike the Ising model whence it was in a sense deduced, admits an exact 
solution in the ordered (translationally invariant) case for any interactions 
and in all dimensions d of space, and when d >f 3 displays the phase 
transition (see, e.g., a review, Ref. 2), although with critical exponents 
somewhat differing from those in more realistic models. (3) One of such 
generalizations, which was designed to describe the phase transition to the 
spin glass state, was proposed in Ref. 4. This model has a phase transition 
with many rather attractive properties. However, this model is in fact a 
hybrid of the spherical and molecular field-type models, for besides the 
spherical condition ~ r e v  s2 = N replacing the Ising condition s ] = 1, this 
model assumes in fact that the range of spin interaction equals infinity. 

In the present work we shall arrive at the expression for the free energy 
of the spherical model without the latter assumption, that is, we shall 
consider the disordered spherical model with a finite interaction range, as is 
common in statistical physics. 

However, an analysis of the resulting expression shows the model to 
have rather unusual thermodynamical properties. Namely, the phase transi- 
tion in this model is possible even in the one-dimensional case, but 
nevertheless, even if the interaction is ferromagnetic, there arises no sponta- 
neous magnetization, and the phase transition itself does not vanish as a 
homogeneous external field is switched on. These properties, which seem 
rather unnatural in the present-day views and as against the ordered 
spherical model, 2 are due to the fact that, as we show, thermodynamics of 
the spherical model of the most general form is essentially determined by 
the structure of the spectrum of the exchange integral matrix ~rr' in the 
neighborhood of its upper boundary ~, by the behavior of the density of 
states p(a) of this matrix near ~ in particular. But as is well known in the 
electronic disordered systems theory, O8-21) this behavior is quite different 

2 Similar results were also obtained in the series of papers, Ref. 8, where quite a different 
approach was used to study the so-called mean spherical model for the special case of 
quasi-one-dimensional (layered) disorder (for details see Appendix A). 
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in the ordered and disordered cases. Namely, in the former, p(a)~ . , (9  - 

a)Ct/2-1 when a]'~, and in the latter, p ( a )  tends to zero exponentially when 
a ~  [e.g., as l n p ( a ) ~  - (~ - a)  - a / 2  (Refs. 18-20)]. This, in turn, is caused 
by fluctuation (cluster) effects in disordered systems and the closely asso- 
ciated existence of the point spectrum in the vicinity of ~ (the so-called 
localization of eigenfunctions in infinite disordered systems(2~)). From the 
same point of view it is clear why the results of this work for the disordered 
spherical model with finite interaction range are different from what they 
are in the infinite interaction range model. (4) The reason is that the 
transition to the infinite range case induces the largest changes in the 
spectrum structure near ~. This fact is also well known in the electron- 
disordered system theory where the self-consistent field-type approxima- 
tions (coherent potential approximation, modified propagator approxima- 
tion, etc. (6'7)) are normally used only for the calculation of spectrum- 
integrated quantities and result in behaviors of the density of states in the 
vicinity of spectrum boundaries that are untrue to reality. 

All the above arguments suggest that direct generalization of the 
spherical model to the disordered case, that is, mere replacement of the 
r -  r'-dependent exchange integrals ~r-r' by random variables ~rr', is 
largely an inadequate approach to disordered magnets. The present paper 
proposes a modification of this model which in the ordered case is thermo- 
dynamically equivalent to the known one, (1) and in the disordered case and 
for positive exchange integrals 3 turns out a good model of ferromagnets, 
since the phase transition exists there only at d > 3 and vanishes if a 
unifG:iTm field is switched on, and the critical exponents are the same as 
those in the ordered spherical model. 

The contents of this paper are briefly as follows. 
In Section 2 an expression is derived for the free energy of the 

spherical model for a most general situation where random exchange 
integrals and the external field satisfy only the conditions of spatial 
homogeneity in the mean, disappearance of statistical correlations at infi- 
nitely distant points, and finiteness of the interaction range. In doing so, 
because the traditional procedure based on the steepest-descent method (1,2) 
encounters some difficulties in the disordered case, we use a different 
calculation procedure for the free energy in the spherical model which is 
closely related to the general statistical physical idea of equivalency of 
various ensembles in the thermodynamical limit. 

The first part of Section 3 is a brief discussion of the partly known 
properties of the ordered spherical model, with a special emphasis on the 
usually ignored case of oscillating exchange integrals, since in connection 

3 The modification of the spherical model for the oscillating interaction case will be considered 
elsewhere. 
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with the spin glass problem, competing interactions are now attracting great 
interest in physics of disordered spin systems. Therefore it is desirable to 
understand to what extent the spin glass features become apparent in the 
ordered case. 

In the second part of Section 3 the spherical model with a random 
external field is examined. The critical properties of ordered magnetic 
systems placed in random external fields are now under active study (see, 
e.g., Refs. 9-11), both because they are the simplest variant of disordered 
spin systems, and because to such models sometimes models with random 
exchange in a homogeneous field may be reduced. (ll'13-1s) We show in 
particular that the ferromagnetic order is unstable if a small random field 
of rather arbitrary nature is switched on, provided that d < 4 (cf. Refs. 9 
and 16). 

In Section 4, the spherical model with random exchange integrals is 
considered. In the first part of the section the above properties of disor- 
dered spherical model are proved (the existence of the phase transition in 
the one-dimensional case, etc.). In doing so, we use some properties of the 
random operator spectrum structure, proved in Appendixes A-C. In partic- 
ular, in Appendix A the fluctuation asymptotic formulas for the density of 
states are obtained by a method which explicitly uses the existence of 
cluster phenomena in the problem under consideration. 

The second part of the section contains a description of the above- 
mentioned modification of the disordered spherical model and demon- 
strates that it leads to plausible physical results. 

In the last section we discuss the structure of spontaneous magnetiza- 
tion m r, which is equal to the Gibbs mean of the spin variable Sr and in a 
disordered system is a random field. The reasons are analyzed of the 
absence of spontaneous magnetization in the disordered spherical model, 
and are found to be associated with the structure of the eigenfunctions of 
random operators at the spectrum boundary that is quite different from the 
structure in the ordered case. The reasoning of this section is of more 
heuristic character and in part relies upon ideas of the spectrum structure 
of some random operator classes which are widely accepted though not yet 
proved for the non-one-dimensional case. 

It might be also proper to emphasize that the results of this work are of 
thermodynamical nature. The structure of the corresponding Gibbs field 
and the states in the disordered spherical model will be considered else- 
where. 

2. FREE ENERGY OF THE DISORDERED SPHERICAL MODEL 

Consider a d-dimensional lattice Z d of vectors r with integer compo- 
nents n l . . . . .  n a and a parallelepiped V in it consisting of vectors with 
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Ini[ < n,  i = 1 , . . . ,  d. As is known,  the spherical  mode l  states are sets 
(Sr:F ~- V~ ErEV,. e2 = N) ,  N = (2n + 1) d. The  energy of each set is 

or more  compac t ly  

H N =  --  2 r , r ' E V  r E V  

^ 
I r  = - - ( h , , )  (2.2) 

In  the disordered case, the exchange integrals ~rr' and  the external field h r 
are r a n d o m  variables.  In  this section we assume that  they satisfy the 
following general  condit ions:  

(1) l~rr'[ and  [hrl are bounded  uni formly  in r , r ' E  2~ d and all realiza- 
tions. 4 

(2) For  any  a ~ -Z a, expectat ions of fo rm 5 

<~rl+a,r2+a " " " ~ r 2 ~ _ l + a , r 2 ~ + a h r 2 ~ t + l + a "  " " h r2~ ,+ l+a)  

are independent  of a for  any  r p . . . ,  r2M+e,  M and  P. 
(3) For  a ~ oo, expectat ions of fo rm 

< ~rl,r2 " " " ~rzM 2M h r 2 M +  1 " " " h~2~+ p~r'~ + o,r'~+ a 

. . . ~6Q_~+~,~Q+oh~+,+~ �9 . . h6Q+~+~ > 

are factorized into a p roduc t  of mean  values 

<~rlr2" " " hr2M+p><~r,lr~" " " hr~Q+R > 

(4) ~r,~' = 0 if I r -- r'[ > Ro, R o < oo. 
Condi t ions (2)-(4) express the propert ies  of macroscopic  spatial  homo-  

geneity of the system, d i sappearance  of statistical correlat ions in infinitely 
distant  points,  and  finiteness of the interact ion range. 

A more  general  and  formalized var iant  of these condit ions m a y  be also 
given. Assume  that  in set s of e lementary  events ~, in which r a n d o m  
quantities ~rr' and  h r are def ined (and thus are funct ions of t~), a group of 
t ransformat ions  Ta, a E 77 ~ is defined such that  

~rr,( Ta6))  = ~r +a,r, +a(O)) ,  h r (  Ta6O ) = hr+a(O~)  ( 2 . 3 )  

Then  condi t ion (2) means  that  t ransformat ions  T o preserve the probabil i t ies  
of any  events (measurable  sets) in s  and  condit ion (3) means  that  group T a 

4 We have recourse to these assumptions in order to simplify the subsequent discussion. The 
results of this section are valid even under the assumption of finiteness of several first 
moments of quantities I~rr'[ and Ihr[. 

5Henceforth the symbol ( . . .  > denotes averaging over the realizations of the involved 
random variables. 



124 Pastur 

has the property of mixing 6 and therefore in particular has no nontrivial 
invariant subspaces. (22) 

Our object in this section is to calculate the free energy in the 
macroscopic limit N ~ oo, i.e., 

f = - lira ( fiN )-I in Z N 
N---~ oo (2.4) 

"= f~ e-BHN H dSr 
Z N  rEvS~ = N  r ~ V  

The traditional way to calculate the free energy in the spherical model 
is based on the steepest descent method. (t'2) However, in the disordered 
case, where exchange integrals are not functions of difference r -  r', the 
application of the steepest-descent method is difficult because of lack of 
information on the distribution of the eigenvalues of matrix 5,,, with 
elements ~,,r' r 4: r' ~ V adjacent to the spectrum right-hand boundary for 
N ~  oo. Therefore we use another approach, based entirely on the real 
analysis, which is similar to that used in Ref. 24 to prove the existence of 
the thermodynamical limit in the microcanonical ensemble from that of the 
thermodynamical limit in the canonical ensemble (see also Ref. 56). 

Let 

= sup ~ ~rr'Xr'~r "' ][Xll 2= E IXrl 2 
HxH = 1 rvar,~Zd rE7/d 

A 
Clearly, 5 /> 5N, where ~N is the maximum eigenvalue of matrix, ~N with 
elements ~rr,(1 - t~rr, ), r,r' E V and therefore matrix A N = ~ -- SN is non- 
negatively defined for all N. Obviously, 

f = + - ~ /2  (2.5) 

where + is the free energy for the partition function 

QN = fZ rEVS2r =N exp[-- ~( '4Ns 's )+ fl(h's)] ~IrEv dsr 

Along with Q~v, consider an integral of the similar expression for an 
N-dimensional ball BN, u of radius N ~/2u: 

Bu,u r ~  V 

and let 

(2.6) 

X(u) = lira XN ( U )  = - -  l i m  ( f i N )  -~ In QN.u 
N--~ oo N---~ oo 

(2.7) 

6 It is enough to assume that group T a is ergodic, which corresponds to the limit in conditions 
(3) in Cesaro's sense, (22) 
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From obvious inequality N -  1/2t3 ~N, 1 < ON • N-1/2( u - 1)Qu,u it fol- 
lows that 

lim X(U) < ~P < X(1) (2.8) 
uS1 

By substituting us, ~ s, in Eq. (2.6) and calculating then the logarith- 
mic derivative, find, with allowance for the condition (1), that derivative 
~XN/Ou is uniformly bounded in N and 0 < u 0 < u < u I < ~ .  Therefore if 
the limit function X(u) exists, it is continuous, and then it follows from Eq. 
(2.8) that 

Lp = X(1) (2.9) 

Thus the problem is reduced to determining X(1) specified by Eqs. (2.6) and 
(2.7). 

To find it, consider the following Gaussian integral: 

"~U= ~_~exp{-- ~-i(2~+ Au)s ,s]+ fl(h,s)l I-I ds, (2.10) 
Ji~ k z-, ) r r  

where ~ > O. Evidently, 
( ~ , N / 2  . f l ^  

"~ ) det [2~ + AN]-l/2exp ~- (GNh, h ) (2.11) ~ N  ~ 

where Glv = (2~" + _3u)- 1. On the other hand, by integrating by parts in Eq. 
(2.11), we have 

"~ ~ 0  ~ - 
" N  ~--" /~ff~/ duexp(--fiN[Xu(U ) + fu]} (2.12) 

But when N ~  ~ with probability 1, there exists 

- lira ( f iN) -~ln~N=fG(~ ) (2.13) 
N---> oo 

Indeed, it follows from Eq. (2.11) that the left-hand side of this equation is 

~ dP~')(a) (2.14) - + l n  ~ +  + f0 ln(2f + a)dPN(a ) -- 1 fo 2 f + a  

Here PN(a) and p~l)(a) are nondecreasing functions specified by relations 
2 

pN(a) = U -1 ~ 1, t,~l)(a) = U - '  ~ ~ k ( r ) h ~  (2.15) 
ak<a ak<a r e v  

and ak, ~pk(r ), k = 1 . . . . .  N are the eigenvalues and eigenfunctions of 
matrix AN. 

As was shown in Ref. 25, under conditions (1)-(4), there is such a 
nonrandom nondecreasing function p(a), that at all its continuity points, 
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with probability 1, 

lim vu(a ) = v(a) (2.16) 
N--> oo 

(see footnote 7). By generalizing the arguments in Ref. 25, one can also 
show that under the same conditions, a similar statement is true for 
sequence V(N l) (a) as well: 

lira v~l)(a)= vl(a ) (2.17) 
N---) oo 

(see footnote 8). Since in Eq. (2.14), ~ > 0, VN(~ ) = v(ul)(~) = 1, then in 
this expression we can go to the limit under both the integrals and obtain 
Eq. (2.13) with 

f c ( ~ )  = - ( 2 f l )  -1In ~~ + f l ( ~ )  + f2(r (2.18) 

where 

1 foO ln(2r + f , (~)  = a) dv(a), 

1 ~ dv](a) 
. . . .  lim (2N)-~(GNh, h) f2(~) 2 - v  2~ + a N-->m 

Now in order to prove the existence of the thermodynamical limit in 
the spherical model we deal with, we shall use the following fact. 

Let nondecreasing concave function ~N(g) and nonincreasing func- 
tion epu(u ), u > 0 be related as 

exp[- -Nq)u(~ ' ) ]  =fo~duexp{-U[epu(U)+ ~'u]} 

Besides, let q)u(~) tend to the limit continuously differentiable func- 
tion qb(f) for every f > 0, when N ~  m. Then cpu(u ) also tends to the limit 
cp(u) for every u > 0, and 

~sup {qS(~) - ~'u} if u ~< tb'(+O) 
_ ~ ' > 0  

q0(u) ~ 0 ( + 0 )  if u > O ' (+0 )  

This statement is an improvement of the Tauberian theorem for the 
Laplace transform of Ref. 24. Its proof does not differ significantly from 
that of the above-mentioned theorem, and we shall omit it. 

7 The derivative of function v(a), when existent, is termed the density of states of the random 
operator 5 determined by matrix ~ 6 r / +  ~r~,(1 - 6r/), r, r ' E ~d 

8 The proof of this statement will be published elsewhere. See also Ref. 26, where a similar fact 
was proved for the Schrgdinger equation with a random potential, and Ref. 27, where it was 
done for elliptic operators of arbitrary order with random coefficients. 
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The statement formulated obviously holds for Eq. (2.12), and therefore 

X(U) = sup { f ~ ( f )  - ~u) 
f~>0 

Proceeding from this relation and Eqs. (2.5), (2.9), (2.16), (2.17), and (2.18) 
we come to the following principal statement of this section. 

Let random exchange integrals ~ ,  and the external field satisfy 
conditions (1)-(4). Then, if N ~ ,  with probability 1, there exists a 
thermodynamical limit of the free energy of the disordered spherical model, 
which is nonrandom and equals 

Isu  
~>0 

/~>~ 
(2.19) 

where fa(~) is given by Eq, (2.18), and tic (inverse critical temperature) is 
the solution of equation 

fb(0)  = 1 (2.20) 

First, we are to show that in the ordered case, where ~rr, and h~ are 
nonrandom, the above obtained expressions transform into the known 
ones. It is convenient to use the following formulas (2s) : 

where E~,(a) is the resolution of identity of self-adjoint operator .~ in 12(• d) 
specified by matrix ~8~r, - ~r,(1 - 8~,). Since in the ordered case ~r, are a 
function of difference r -  r', and h, is independent of r, then after transi- 
tion to the Fourier transform, ~ and A are operators of multiplication by 

i ( q ) = E  ,qr.  = _ 

r@~_ a 

and therefore 

dul 
a~ _ IBI- , fB~( a _ A(q))dq, - 6(a - A'(0))h 2 (2.22) da da 

where ~ = SUpq~e ~(q), B is the first Brillouin zone of lattice Z d. If Eq. 
(2.22) is substituted into (2.19), we find that in conformity to Refs. 1 and 2, 
in the ordered case the spherical model free energy is 

1 l n ~  + 1 f s ln [2z_~(q ) ]dq_ .2[2z  h2 f(fl) = 2 f l  2BIB-----~ - 5 ( 0 ) ]  - z  

(2.23) 
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where z is the solution to equation 

1 3B + = 1 (2.24) c 2  z aq h2 
•IBI - [ 2 z -  2 

(see footnote 9). The above equation, in the ordinary derivation of Eq. 
(2.23), is obtained as the expression for determination of the steepest 
descent point. Write also the expression for the reciprocal critical tempera- 
ture tic following from Eq. (2.23), for h = 0: 

' fB dq foo~ P'(a)da (2.25) = IBI -  5 = a 

The nonanalytical in fl and h behavior of various thermodynamical values 
corresponding to phase transitions appearing in the model under discussion 
is the case for/31" tic, where the solution of Eq. (2.25) approaches 5 and is 
determined by the behavior of ~(q) in the vicinity of this value. 

In conclusion of this section, note that the main formulas (2.18) to 
(2.20) can be obtained also in the framework of the so-called mean 
spherical model as well. (28'z9) This model, unlike the original one of Ref. 1, 
treats the spherical condition ~rE vS~ = N as fulfilled only in the average. 
That means that these two models are related to one another in the same 
way as the canonical and grand canonical ensembles of the statistical 
mechanics, the density in the former being equal for all microstates, while 
in the latter only the average for the ensemble is assigned. As was shown in 
Ref. 29, the models are equivalent for all values of thermodynamical 
parameters at which there are no phase transitions, or when an external 
field removing the transition (i.e., breaking the symmetry) is added to 
energy (2.1). This seems quite natural in terms of the mentioned similarity 
to canonical and grand canonical ensembles, since as is known, (23~ 
thermodynamical ensembles are equivalent when there are no phase transi- 
tions in the system. 

Note also that the principal equations (2.18)-(2.20) are valid wherever 
exist limits in Eqs. (2.16) and (2.17). The latter can be the case even though 
not all of the conditions (1)-(4) are satisfied. Let, e.g., 5rr, be equal to - 2 5  
for a certain pair (r,r') be zero for the rest of pairs and h = 0. Then 
/ ( a )  = d(a - 5) and the associated free energy can be readily calculated. 
This expression was first obtained in Ref. 55, where moreover it was 
demonstrated to equal the free energy in the spherical model with the 
Curie-Weiss interaction, 5rr, = 5 N -  ~. In our formalism this fact immedi- 
ately follows from the circumstance that the p'(a) corresponding to such an 
interaction is also equal to ~(a - 5). 

9 In writing Eqs. (2.23) and ~(2.24), to compare them to the known formulas, we passed from 
variable ~ to z and from A to ~. 



Disordered Spherical Model 129 

3. SPHERICAL MODEL WITH NONRANDOM 
EXCHANGE INTEGRALS 

We start with a brief discussion of some known results associated with 
the ordered spherical model. Remember that this is the case of the finite- 
range interaction, i.e., 9r-r' = 0 with Ir - r' I f> R0 .1~ Let q0 E B be the point 
where 9(q) reaches the maximum. Then, if the Gaussian of the function 
~(q) is not degenerate at this point (obviously the general case), expansion 
of ~(q) in the vicinity of q0 starts with terms proportional to q2 and 
therefore, 

e ' (a )  = C a a a / 2 - ' [ 1  + o(1)] ,  aS0 (3.1) 

where C a is a constant. Hence, in the ordered spherical model the phase 
transition in the zero field appears at a dimension no less than d = 3, since 
tic of Eq. (2.25) becomes finite for d/> 3. As is suggested by Eq. (2.23), 
magnetization m = -Of /Oh  is given by relation 

r e ( h )  - h 
2z(h) - ~(0) (3.2) 

where z ( h )  is the solution to Eq. (2.24). Thus, the mathematical mechanism 
of the appearance of the nonzero spontaneous magnetization, m 0, in the 
spherical model is a sufficiently rapid approach of z ( h )  to ~(0) when h ~ 0. 
Such is the case with ferromagnets for which ~r >/0 and therefore, 

~ SUpq~B ~(q) = ~(0). Here when fl >/tic 

m o = ( 1 - tic / fl ) 1/2 sign h (3.3) 

(see footnote 11) for all d i> 3. As regards the magnetic susceptibility in 
zero field, it is finite and varies as (f lc /f l  - 1) 2/a-2 when fl < tic, and when 
B>/ c 

o o, d < 4 (3.4) 
X =  c o n s t ( f l -  -1 tic) , d > 4  

Thus, if 92/> 0, when fl = tic, the model has the phase transition to the 
ferromagnetic state characterized by a nonzero spontaneous magnetic mo- 
ment. If a uniform external field is switched on, no matter how small it may 
be, the phase transition disappears. 

Now take the case of nonpositive r which may appear in case of 
antiferromagnetic interaction (Sr < 0), interaction due to indirect exchange 
(oscillating in Irl~r), and dipole, spin-orbital, or superexchange interaction 

1o One can readily make sure that the facts we are stating are true even when ~]r~zar2[~rl 
< Oe. The case of slower decreasing interaction was analyzed in Ref. 2. 

I I W e p u t x + = x i f x > / 0 a n d x + = 0 i f x < 0 .  
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(~r changing its sign as the direction of r is changed). (3~ In all these cases, 
if negative ~r are many enough, if(0)< 4.12 Since, by Eq. (2.24), when 
fl > tic, 2z(h)$~ with h ~ 0 ,  then, as appears from Eq. (3.2), there is no 
spontaneous magnetization in such systems. The magnetic structures that 
arise in such cases either include several sublattices with zero total magnetic 
moment, or are noncollinear and noncommensurable magnetic helical 
structures also possessing zero macroscopic moment (see Refs. 30 and 31 
and Section 5 of this paper). 

The magnetic susceptibility is in this case 

-1, /3  /3c 
(3.s) 

x = [ [ 2z (0) - ] - ' ,  /3 .</3c 

where z(0) is the solution to Eq. (2.24) for h = 0. As for/3 I" tic, 2z(0) - 
behaves as (/3 C - / 3 )  ~, a = min(1 ,2 /d  - 2) then for all d, X in the vicinity 
of/3 C is continuous, but when d > 4, its plot has a cusp at 13 = tic, since 

dx  _ ( O,_ fl >~ flc (3.6) 
d/3 const, ill" tic 

We see that the behaviors of m and X are only determined by the form of 
~(q) near its maximum and therefore these quantities are the same for so 
widely differing physical situations we described above, where because of ~r 
sign alternation, ~ and ~(0) may differ. This is only when we examine the 
possible spin configurations, i.e., quantities m r which are Gibbsian averages 
of s r, that we see a difference (these questions will be discussed in Section 
5). This accounts for the finiteness of the magnetic susceptibility represent- 
ing a response to a uniform applied field, and for the resulting stability of 
the involved ordered state when a uniform external field is switched on: it 
does not vanish unless h >/~(0) lower fields resulting only in decreasing 
critical temperature: 

/3* = tic( 1 - h2/~(0)) - 1 >  tic (3.7) 

The singularity at/3 = tic in both the cases appears in the response to 
the field proportional to e iq~ where q0 is such that SUpqcB if(q) = ~'(q0) and 
therefore the ordered low-temperature state is absolutely unstable with 
respect to the field switch-on (it vanishes at arbitrarily small amplitude of 
the field). 

Note that e iq~ is proportional to the eigenfunction of operator 
corresponding to the maximum spectral parameter value. Therefore, sum- 

12 For example, in a simple cubic lattice, for ~r = ~1 ) 0, for nearest neighbors, ~r = ~2 < 0 if r 
are next-nearest neighbors, ~ > ~(0) if ~1/41~21 < 1. 
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ming up the above results, one sees that the thermodynamical properties of 
the spherical model entirely depend on the spectral properties of the 
operators ~N and ~ in the vicinity of the right-hand end of their spectrum. 

Consider now the spherical model with nonrandom exchange integrals 
depending only on the r - r '  difference, but with random magnetic field h r. 

Such models with nonrandom interaction and static quenched field are in a 
sense the simplest nontrivial examples of disordered spin systems and have 
recently been considered more than once. (9-11,15,16),13 

In accordance with the general equations (2.19) and (2.20) of the 
preceding section, f c ( z )  should be found from Eq. (2.18). In this case, f l (z)  
obviously will be just equal to that in the ordered case, and 

h 2 1 ( W(__q)dq (3.8) 
fz(Z) = - 212z - ~(0)] 2IB[ - ~(q) 

where h = (hr)  and ff/'(q) is the Fourier transform of the correlation 
function of hr, i.e., function W r = (hohr) - h 2. 

This formula shows that when h r 0, the thermodynamical properties 
of the model under discussion are similar to those of the homogeneous 
(ordered) spherical model in which h r - - h .  Therefore let us consider the 
case of h = (h~) = 0. The properties of such a model are essentially depen- 
dent on the space dimension d. Thus, for d < 4, the ferromagnetic state, 
which in case of ~r ~ 0 and d > 3 exists when fl > tic and h r = 0, vanishes 
when an arbitrarily small field is switched on. Indeed, as follows from Eq. 
(3.8), for such instability to be the case, the derivative of function should go 

to infinity when 2z = ~(0) = ~. 
When h =~ 0, we find this property with the first term of Eq. (3.8). 

When h = 0 and the space dimension is only moderately high, the second 
term can also become singular. Indeed, let, e.g., the values of random field 
h r be not correlated at various points, i.e., W~ = 8~0. Then l ~ ( q ) =  const 
and 

Of 2 _ { [ 2 z -  ~(O)] 2-a/2, d < y 

0z - ln [2z  - ~(0)], d = 4  

when 2z$~(0). Clearly the same asymptotic behavior of f~ will be the case 
wherever I/V(0)g= 0. So, in all such cases the ferromagnetic state in the 
spherical model is unstable if the space dimension is not in excess of 4. This 

t3 Some of the physical situations in which such fields appear are described in Refs. 9 and 15. 
A random field in the spherical model may also be generated by certain types of random 
exchange integrals. Take, for example, ~rr" in the factorized form ~rr' = afar', ar = --+ I; in 
this case substitution s~--> a,.s~ leads to the field h~ = ha~.(12) 
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was first shown in Ref. 9 for models with continuous symmetry by a 
heuristic analysis of the domain boundary energies and the linear suscepti- 
bility divergence. It was proved also in Ref. 16 for the X-Y model with 
Gaussian noncorrelated hr; however, in the latter paper the so-called 
replica trick was used which is difficult to control. 

One can also make sure that, when d > 4, the transition to the 
ferromagnetic state takes place if parameter 

1 =- ; N  gZ(q)aq 

which is a certain measure of the random field fluctuations is less than l, 
viz. C < 1. Then the role of the transition temperature is played by quantity 
[cf. Eq. (3.7)1 

fi * = (l - e ) - '  Bc > 

so that the switch-on of a random field with zero average value at d > 4 
impedes the phase transition, which occurs at a lower temperature fi*, and 
even disappears when the field fluctuations are large enough and therefore 
~ > 1 .  

4. SPHERICAL MODEL WITH RANDOM EXCHANGE INTEGRALS 

Now analyze the general formulas of Section 2 for the case of major 
importance to us, i.e., where exchange integrals ~rr' are random. As our 
primary interest is the phase transitions and changes therein induced by the 
homogeneous external field switch-on, we assume h r ~ h for Eq. (2.1). In 
this case the function f2(f ) of Eq. (2.18) becomes 

h 2 
f2(g) = - Tq0(~)  

( } fo d (a) r lim N - '  ~ G.~, -- 2 - - ~ a  
N-~or  r,r' E V 

/~(a) = U-~lim N - '  ~ [ ~v~/k(r) r 

These formulae and Eq. (3.19) show that the magnetic moment in the 
model under discussion is 

re(h) - Of Oh = hq)(~(h)) 
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where ~(h) is the root of Eq. (3.20), which in this case becomes 

1 ( ~  du(a) h2[.~ dl~(a ) 
Jo X ~ a  + Jo - 1 (4.2) (2f  + a) 2 

The above formulas imply the following statements: 
(a) the phase transition in a zero field takes place then and only then, 

when the integral 

f0 d (a)a 
is finite. 

(b) The spontaneous magnetic moment m 0 is zero below the critical 
temperature (fl  > tic) then and only then, when /~(+0)  = 0 (see footnote 
14). 

(c) The phase transition does not disappear in response to the switch- 
on of an infinitely small uniform field then and only then, when the integral 

fo ~ dr(a) _ ~'(0) 
a 2 

converges, for which it is sufficient that, when aS0,/~(a) should tend to zero 
no slower than a 2+c, c ~ 0. 

It appears from these statements that to gain an insight into the 
thermodynamical properties of the disordered spherical model, it is neces- 
sary to know the behaviors of the distribution function v(a) and #(a) in the 
vicinity of the origin, i.e., the boundary of the operator ~ spectrum. 
However, unlike the ordered case, where, as we saw in the preceding 
section, these functions are calculable quite easily, it is far not so in the 
disordered case. These problems are given much consideration in the theory 
of disordered systems. Thus, for instance, even the studies of eigenvalue 
distribution functions comprise a considerable part of it. However, most 
works dealt with the Schr6dinger equation with random potential and its 
discrete analogs, i.e., the case of operators with the so-called diagonal 
disorder (see, e.g., review, Refs. 19 and 23, and also Refs. 20, 33, and 34). 
The eigenvalue distribution of random operators with off-diagonal disorder, 
which appear in magnetic problems, is much less studied. Very little if at all 

14Since by the very definition, / ~ ( - 0 ) = 0 ,  then naturally equality m 0 = 0  at /~ > tic is 
equivalent to the continuity of function/~(a) at a = 0. For example, in the ordered model 
discussed in the preceding section, in accordance with Eq. (2.22), t~'(a) = 6 ( a  - A (0)) and 
therefore in case of alternating exchange integrals, where -d(0) > 0 = infq e e A (q) there was 
no spontaneous magnetic moment, as we saw. 
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is known also of function /~(a), particularly as concerns the non-one- 
dimensional situation. 

Therefore we shall first dwell upon a comparatively simple case 
permitting us to get the required information by means of rather simple 
arguments, provided that special assumptions are made. Certain more 
general results for the asymptotic behavior of functions p(a) and/~(a) when 
aS0 are supplied in Appendixes A and C. 

So, let us consider the case of ferromagnetic interaction of nearest 
neighbors, when 

I 0, Ir - r'l ~ 8z 

~r , = r + ~t (4.3) ~ rr' "~" ( l)  r' 

where _ 6 t, l = 1, 2 . . . . .  d are vectors connecting the particular point of 
the simple cubic lattice with nearest neighboring second points. 

Assume for the random ~t~ variables that all of them are independent, 
identically distributed and such that 

sup ~t~ = K < ~ ,  inf ~t) = k > 0 (4.4) 

and (which is the main technical assumption) 

P r{~  ') > K -  e) < C, ~, a > lid (4.5) 

Otherwise speaking, we require that random variables ~tl should take on 
their maximum values with sufficiently small probability. 

As is shown in Appendix B, under such conditions, 

fo ~dp(a)-<~, f0 ~ d / ~ ( a ) - < ~  (4.6) a a 2 

Hence, based on the above-formulated statements (a)-(c), we come to the 
following conclusions concerning the disordered spherical model with the 
interaction described: (1) The phase transition in the zero field is possible 
for any dimension of the space; (2) the low-temperature phase has no 
spontaneous magnetization; and (3) the transition does not disappear if a 
uniform external field is switched on. 

One may think that the sufficiently rapid approach to zero of functions 
p(a) and/~(a) when aS0 and the ensuing conclusions (1)-(3) are due to the 
special character of conditions (4.5). However, as is shown in Appendix A, 
in the one-dimensional case, function ~,(a) corresponding to random vari- 
ables ~r, assuming only two magnitudes K > k > 0, where the conditions 
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(4.5) are obviously not fulfilled, has the following asymptotics: 

t np(a) = -(C/~/-a)[ 1 + o(1)], aS0 
(4.7) 

c = I lnpl~r2g,  p = Pr(~, --- K)  

Thus, even in the one-dimensional case, v(a) can tend to zero more rapidly 
than any power of a. 

The results of many papers which studied the function v(a) show that 
for operators with diagonal disorder, such behavior of this function is 
characteristic and can be observed in any space dimension and for a wide 
class of probability distributions of matrix elements, provided that the 
statistical correlations between elements are sufficiently weak. Such behav- 
ior is the case because the spectrum adjacent to the boundary of the type 
under consideration (usually termed fluctuational (1~ is due to rather 
rare fluctuations (large deviations) of matrix elements when these are close 
to a certain extremal value over a sufficiently large region of the lattice. The 
method used in Appendix A to obtain the asymptotic form of Eq. (4.7) 
evidences that in case of off-diagonal disorder such asymptotic behavior of 
v(a) must also be largely universal. 

Besides, we show in Appendix C that even conditions (4.5) are suffi- 
cient for the function/z(a) in any dimension to be continuous at zero. 

What has been said suggests that the above formulated properties 
(1)-(3) of the disordered spherical model are rather general in nature. They 
however disagree with the present-day idea of disordered magnetic systems. 
Thus, for example, any reasonable model with positive interaction should 
display ferromagnetic phase transition. As regards the Ising model and the 
classical X-Y model, this follows, for example, from the Griffith inequali- 
ties. (23) Therefore it seems that the spherical model generalization to the 
disordered case in the above form is not a reasonable model of disordered 
spin systems. 

Without attempting to build up a more plausible modification of the 
disordered spherical model in the general case of alternating exchange 
integrals (one of such modifications will be the subject of a special paper), 
we shall show here how such modification may be made in the simplest 
case of nonnegative ~,r' (ferromagnets). It is achieved by substituting for 
-~rr '  in the energy expression (2.1) the following quantities: 

I,~, = ~,r' ~_~ ~#r'-- (1 -- r (4 .8)  
p~r 

and accordingly the energy expression (2.1) becomes 

H ' =  1 1 A 
~ ~--a Irr'SrSr'-- ~a hrSr=- z (INS'S) -- (h ,s )  

r,r" ~ V r~ V 
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In the Heisenberg model, where 2 _ const, or in the ordered spherical S r 

model, where 5rr' depends only on the difference r -  r', H and H '  differ 
only by the additive constant and are therefore thermodynamically equiva- 
lent. But this is not so in the disordered case. To make certain of that, note 
first of all that since Ir~, satisfy the conditions (1)-(4) of Section 1, if so do 
~ , ,  then the free energy of our modified model can still be calculated by 
the general formulas (3.18)-(3.20), with z + 1/2 instead of the variable f, 
where 

I =  inf ~, I~r,Xr2r,= inf ~ ~rr'lXr--Xr'l 2' [[Xll 2= E IXrl 2 
I[x[I = I r,r, Uzzd [ [ x l [  = 1 r,r, E 7/d r E Z d  

An important property of I~,, which along with the nonnegativity of 
5~r' is responsible for the more reasonable properties of the modified model 
than those of the former one, is expressed as 

Irr, = 0 (4.9) 
r' ~_~ d 

It is the analog of the conservation of the total spin and, roughly, 
means that every random operator zf determined in/~(Z a) by matrix Ir~, has 
the constant as the eigenfunction corresponding to zero eigenvalue. 

Even this equation (4.9) alone allows us to explicitly calculate function 
~(~) in Eq. (4.1). Denote by d u the vector of/2(V) with components N -  1/2, 
r ~ V. Then cp(~) may be written as follows: 

A 

cO(f)-- lim (GNdN, dN) 
N-- ->  o o  

A A | 

or, because of the known identity for the Green function G N = (2z + IN)- 
A A A ^ A 

of operator Ijv, GN = (2z) - |  - (2z)-2/N + (2z)-212G:v as 

q0(f) = (2z) - | -  lira (2Z)-=(eN, dN) + lim (2z) (GNeNeU) 
N - - >  o o  N- - ->  o o  

where e N = [NdN . But it follows from properties (1) and (4) of random 
variables ~ ,  and Eq. (4.9), that the number of nonzero components of 
vector e N have order Nd-|/aRo and each of them has order N -1/=. 
Therefore the norm of e N in lz(V) has order N -  l/d and consequently, when 
z > 1/2, both the limits on the right-hand side of the above relation are 
zero. Thus, finally, 

1 ( 4 . 1 0 )  
~(~) = 2 ( ~  - 1/2) 

i.e., q0(~) has the same form here as that in the ordered spherical model [cf. 
Eq. (2.23)]. 

In obtaining Eq. (4.10) we used only condition (4.9). Now take into 
account the ferromagnetic character of the interaction, i.e., the nonnegative 
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character of the random variables ~rr'" Owing to this property and to Eq. 
(4.9), point 0 is the lower boundary of the spectrum of the random operator 
I, so that I = 0 and z = ~'. However, the character of this boundary is now 
quite different. In virtue of Eq. (4.9), the spectrum in the vicinity of the 
boundary (which can be called stable) is due to typical realizations of and 
therefore the distribution function of the operator ~? eigenvalues is no more 
exponentially small at low a, in contrast to the analogous function of 
operator ~. Moreover, as in the ordered case [cf. Eq. (3.1)], 

u(a) >1 T, dad/2[1 + O(1)], aS0 (4.11) 

Indeed, it follows from the results of Ref. 25 that u(a) will not change 
if elements Irr, in a fixed thickness layer adjacent to the boundary of V are 
changed in an arbitrary fashion. Therefore replace Ir~, by 

Irr" "~" ~rr" E ~ro-- (1 -- 3~r,)$r~,, r,r' E V (4.12) 
p ~ r '  

Then the corresponding quadratic form will become 

Y, t ,lx - x ,l 2 
r,r' E V 

which implies that the eigenvalues of operator 7 u are monotonic functions 
of elements ~r~" Therefore if we replace every ~r~, by its maximum value, 
which is by virtue of properties (2) and (3) of Section 2 a nonrandom 
(r - r')-independent quantity 

sup ~rr,({O) -~- ~r--r" 
~ o ~  

then the function ~(a) of this difference operator will be related to p(a) as 

u(a)/> ~(a) (4.13) 

and for small a have asymptotic behavior as that of Eq. (3.1). 
If the random variables of ~rr" lying at least in one of the "diagonals," 

i.e., ~r,r+~o for a certain r 0 and all r E Z d, are bounded from below by a 
positive number, then applying a similar reasoning, one can also obtain the 
upper estimate for u(a) of the same type: 

u(a) < i,(a) (4.14) 

where ~,(a) is the distribution function of eigenvalues of the Toeplitz 
operator with elements 

Jr--r" = inf ~rr,(O)) 
r " " 

and consequently, on the assumptions made, 

p(a) < pdaa/2[ 1 + o(1)],  aS0 (4.15) 
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(see footnote 15). From Eqs. (4.13)-(4.15) it follows that the thermodynami- 
cal properties of the modified spherical model (4.8) in the ferromagnetic 
case are quite similar to those in the corresponding ordered model, that is, 
when d i> 3 there is the phase transition in it which is attended by the 
appearance of spontaneous magnetization and this transition disappears as 
an arbitrarily small uniform field is switched on. Besides, the transition is 
characterized by critical exponents just the same as those for the ordered 
case. 0) 

As is shown by some numerical calculations, the situation is the same 
also in some cases when 9rr' may go to zero with nonzero probability, Thus, 
if 9rr' = 5r-r'C*Cr" where the nonrandom function is nonzero only for the 
nearest neighbors and random variables c~, the "occupation numbers," 
assume values 1 and 0 with probabilities p and 1 - p ,  respectively, then 
asymptotic form of p(a) is also 

v(a) = (a/@)d/2[l + o(1)] ,  aS0 

The coefficient @ depending on concentration p is positive for all 
P > Pc, where, for example, for the bcc lattice, p = 0.178. (37) One may think 
that, when p <Pc,  v(a) ''~ar with 7 < d/2. Thus, if we make a natural 
assumption (38~ that low-lying eigenfunctions of operator I have the form of 
quasi-plane-waves which can be characterized with the "dispersion law" 
~0(k) and for small k 

~o(k) = @k 2 -b Fk 4 

then, if F ~ 0 for p ~< Pc, 

t , (a)~(a/F)  d/4 

Hence it follows that in this case, if d < 4, there wilt be no phase 
transition and therefore at PSPc the critical temperature in the three- 
dimensional model should tend to zero. One can readily show that this 
tendency will be as Tc(p)~| 1/2, so that, if in accordance with results of 
Ref. 39 assume that | - p c )  ~ a = 1.33, then 

- p c F / 2 ,  po 

Such behavior of the critical temperature means that in the model 
under consideration there should appear the concentration phase transition. 

15 In the one-dimensional case, with nearest-neighbor interaction, the asymptotic form of II 
may be f o u n d  (35'36) : 

v(a)=(2"/t) l(a < ~-1))1/211+ o(1)], a.~0 
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5. ON THE MAGNETIZATION FIELD IN THE SPHERICAL MODEL 

As was mentioned in Section 3, even in the ordered case, several 
different nonpositive functions ~r-~, lead to the same thermodynamics. 
However, the magnetic structure arising at T < T c is, generally speaking, 
different in such cases. This becomes clear after calculation of the Gibbs 
expectation ~6 of the spin variable s r. In the disordered system, whose 
realizations are not translationally invariant, (st)  c = m r depends on r; this 
dependence being different for various realizations, m r is a random field. In 
terms of this field one can give a classification of magnetic structures and 
express some thermodynamical quantities (see Refs. 40-42). 

As is known, to have a nonzero (st)  c value at T < To, one should 
introduce a symmetry-breaking term into the Hamiltonian. The structure of 
this term may be revealed by thermodynamical considerations. Indeed, let 
h~ in Eq. (2.1) be equal to e~/k(r)N 1/2, where ~k(r) is the eigenfunction of 

matrix ~N corresponding to the kth eigenvalue X k arranged in nonincreas- 
ing order. Then, following in essential features the line of argument of 
Section 2, we find that the corresponding free energy is 

1 ~ c 2 fx(z) = ~ In -fl(z) 2(2z - •) z 

where h = limN_+~ hk (see footnote 17), and z is the solution of equation 
f~ + (2(2 z _ )Q-1 = 1. Hence [cf. Eqs. (2.23) and (2.24)], 

Ofx- c ( 2 z - ) , )  -1, lim 0fx {(1-flc/fl)~ 2signe' h = ~  (5.1) 

Thus, we see that in the thermodynamical limit, the effect of perturbation 
eN1/2~r~vq~k(r)sr does not vanish only provided that +k(r) is the eigen- 
function of ~u corresponding to the eigenvalue X~ tending to ~, i.e., the 
right-hand edge of the operator ~ spectrum. This implies that the term of 
such form should act as a symmetry-breaking perturbation. 

Since, when c > 0, f~ is a smooth function of c, then, according to the 
Griffith theorem, ~44~ with probability 1, 

lim N-1/2 ~ l~k(r)(Sr~G, ~kk,~ 
~E N--+ 0r r ~  V 

This relation, combined with Eq. (5.1), means that the role of the order 
parameter in the spherical model should be played by the projection of 

16 Gibbs averaging will be denoted by ( - �9 - ) a .  
17 As follows from Refs. 25 and 43, any growth point of function u(~ - a) is a limit point for 

~N matrices eigenvalues for N---> oo. 
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function m r = (st)  G on the eigenfunction qJk(r) corresponding to the maxi- 
mum eigenvalue, or to be more explicit, by 

lim lim N-1/2 ~ ~/k(r)mr=__ m~, Xk'~ 
r N--+eo r E  V 

Based on this and on the completeness of the {+k} system, it is natural to 
expect that in the thermodynamieal limit, 

m r = m~ lim Nl/Z~k(r ) (5.2) 
N---> oo 

This relation can be proved for some cases. Indeed, when e > 0, the 
steepest-descent method shows that for any fixed r E ga and Xkq'~, 

lim [(s t )  o e N '/%~(r)] = 0 (5.3) 
~ o o  t 2z - X k 

Where there exists limu_,~N1/2~k(r ) =--~(r) Eq. (5.3) after having taken 
the limit e$0 leads to Eq. (5.4). The said limit exists in the ordered case. 
Here ~ ( r ) =  cosq0r, where q0 is specified by relation SUpqE8 if(q)= ~(qo) 
and we obtain the known result that in the ordered spherical model [cf. Eq. 
(3.3)1, 

m r = sign @ (1 -- flc/18)l+/2cosqo r 

Depending on the lattice and interaction types, the spin distribution may 
widely vary. (3~ 

The question of existence of the above limit in the disordered ease has 
received almost no attention. If we assume nevertheless that it exists, even 
though in the following weak sense 

lim U -1 ~, Nl/Z~/k(r ) =-- A ,  ~kk~ (5.4) 
N---> oo r E  V 

(see footnote 18) then the absence of spontaneous magnetization even in 
case of nonnegative ~rr' stated in Section 4 finds a heuristic explanation. 
Indeed, if the left-hand limit in Eq. (5.4) exists, then the spontaneous 
magnetization is 

m 0 = lim N-1  E mr= m~A 
N-->~ rE V 

and thus its zero value means that A -- 0. But if ~rr' > 0, then according to 
the Perron-Frobenius theorem, (45) the eigenfunction +0(r) corresponding to 
the maximum eigenvalue does not change its sign anywhere and the zero 
value of A is only possible owing to the fact that +0(z), when N ~  oo, 
remains, roughly, a decreasing function. Such behavior is quite natural in 

is I t  follows f rom the Cauchy  inequal i ty  tha t  the expression under  the l imi t  sign is bounded .  
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terms of the modern disordered system theory (21) in which it is widely 
accepted that the operator ~ in the vicinity of the fluctuation boundary has 
the pure point spectrum. 

It has been long known (2'46) that the spherical model has much in 
common with the ideal Bose gas, in particular the phase transition in it is 
analogous to the Bose-Einstein condensation. It is therefore no wonder 
that the thermodynamical behavior of the ideal Bose gas in a random field 
is characterized by equally unusual properties: the phase transition appears 
to be possible even in the one-dimensional case (47) and it is not accompa- 
nied by macroscopic occupation of the ground state (this latter fact is the 
analog of the absence of spontaneous magnetization in the spherical 
model), so that this transition may hardly be called a condensation. 

In Ref. 48 a simple model of the one-dimensional Schr6dinger equa- 
tion with a field formed by point chaotically distributed scatterers of large 
intensity is considered to show that ~0(r) is concentrated in a range of 
length In N, whence follows the impossibility of macroscopic condensation 
in the ground state. 

The essence of our arguments has, as is seen, the same nature as those 
in Refs. 47 and 48. 

From this point of view it also becomes clear why the spontaneous 
magnetization in the modified spherical model (4.9) is nonzero. Indeed, the 
reasons used in the derivation of Eq. (4.10) essentially imply that vector dAN 
in case of large N is in a sense close to the eigenvector of matrix IN 
corresponding to the minimum eigenvalue, and then N l / 2 t ) o ~ N  1/2d N = 1, 

The facts mentioned are ultimately due to the absence of the transla- 
tional invariance in every realization of the disordered model [condition (2) 
of Section 2 provides such invariance in the mean only]. This leads to the 
possibility (first noted in Ref. 8) of much larger, than in the above case, 
fluctuations of the magnitudes of spin variables sr and, as a consequence, to 
much larger, than in the ordered case, differences of the spherical model 
from the Heisenberg model where it is fixed. The existence of such 
fluctuations is indirectly evidenced by impossibility to obtain the disor- 
dered spherical model from the classical Heisenberg model in the infinite 
spin dimension limit (see Ref. 49 and Appendix D). 

More straightforward evidence is as follows. Calculate, by the steepest- 
descent method, the (s2)G value for T > T c where it can be done even in 
the disordered case. The result is 

lira a - N--> c~ ( S t ) G  -~" B 1Grr 

* 1 where G = (2~ = A)- , and since at T > T c ~ > 0 and .d/> 0, then the 
Green function, G, is well defined. In the ordered case, G is a difference 
operator, Grr does not depend on r and coincides, as is seen from Eq. (2.21), 
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with the left-hand side of Eq. (2.24) for h = 0. Therefore for all T, 
/3- IGrr = 1, that is, at least (s~) G is in the ordered spherical model the 
same as in the Heisenberg model. In the disordered case the behaviors of 
the sum N -  1~ r~ v(S~)G and of an individual term are essentially different. 
While the former value, for N ~  ~r becomes nonrandom and therefore 
equal to ( ( s2)c ) ,  which is equal to 1 because of Eq. (2.20), (s~) a on the 
other hand at T$ T C in various realizations may have widely varying values. 
Indeed, write Grr as 

fo ~ dpr(a) (5.5) Grr= 2 ~ + a  

where ~,r(a) --- Err(a ) and/~(a)  is the resolution of identity of the operator 
A. Suppose that in the neighborhood of zero the spectrum of A has a point 
component (this fact is equivalent to the above-mentioned localization of 
disordered system eigenfunctions and may be rigorously proved for the 
one-dimensional case(5~ If ~rr' >I 0, then with using the Perron-  
Frobenius theorem, one can show that point 0 with probability 1 cannot be 
an eigenvalue and is only the limit point for them (this follows from the 
results of Ref. 43). Since, based on Eqs. (5.5), (2.21), and (4.7), 
lim;~o(/3- lGrr ) exists and is finite, then because of the monotonic depen- 
dence of Grr on ~ [see Eq. (5.5)] limg+ 0/3-lGr,. exists and is finite with 
probability 1. However, the magnitude of this limit can become arbitrarily 
high, so far as the eigenvalues of A may approach point 0 arbitrarily 
closely. But as follows from Refs. 18 and 19, these eigenvalues are due to 
such essentially inhomogeneous fluctuations of ~r/, when they assume 
near-maximum values over a sufficiently large lattice domain. 

Now consider in brief the question of the form of m r in the spherical 
model with random field h r which was discussed in Section 3. For simplic- 
ity, assume that h r are statistically independent random variables. Because, 
when h-----(h~) v a 0, Eq. (2.20) with f2(z) of Eq. (3.8) has the solution 
z > 5/2,  then, by the steepest-descent method, we find that 

1 eiq~dq 
mr ~" E Grr'hr ", G r = ~-~ (_ (5.6) 

2z ~ -~q )  r' E ]7 d 

and the series involved here converges with probability 1 because of 
decrease in Gr, exponential when 2z > 4(0), and in accordance with the 
three series criterion. (52) The macroscopic magnetization is in this case 

m = <lYlr> = h E a r =  h (5.7) 
rEz~ 2z - ~(0) 

in agreement with the result of differentiation of Eq. (3.8) with respect to h 
[cf. Eq. (3.2)]. When d < 4, limh~0Z > ~(0) (see Section 3), and therefore the 



Disordered Spherical Model 143 

spontaneous magnetization is zero, in agreement with the ferromagnetic 
state instability established in Section 3. When d > 4, m [ h = 0  -~ 0, but the 
series in Eq. (5.6) converges much slower. Indeed, the mathematical expec- 
tation of the series terms is zero (h = 0) and the variance is proportional to 
G 7, and as, when 2z = ~(0), Gr--lrl-(a-2), then the convergence of the 
series of variances sufficient for the convergence of the series into Eq. (5.6) 
with probability 1 is provided only by inequality d > 4: 

2E Gr-f dr d > 4  r 2 ( d - 2 )  rd - -3  
r ~ Z  d 
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APPENDIX A. DISTRIBUTION OF EIGENVALUES OF RANDOM 
JACOBIAN MATRICES AND THE DISORDERED 
SPHERICAL MODEL OF ONE-DIMENSIONAL AND 
LAYERED MAGNETS 

Consider the simplest case of disordered spherical model, assuming 
that the space is one dimensional, that the interaction involves only nearest 
neighbors, and the corresponding exchange integrals ~k are independent 
random variables taking on either of two values 0 < k < K with probabili- 
ties 1 - p  and p, respectively. 19 In accordance with Eq. (2.18), for the 
construction of thermodynamics in a zero external field it is sufficient to 
know the distribution function of eigenfunctions of the Jacobian matrices 
with elements ~mn = ~rn+ I,n~n "[- 6mn+ l~n+ 1" Since the,spectrum ~ occupies 
the range ( -2K,2K) ,  then when changing from ~ to A = ~ - ~ ~ --- 2K, we 
come to the problem of finding the limit of Eq. (2.15) for a sequence A N of 
matrices, corresponding to equations 

--~n+lUn+l"b~Un--~nUn_l=aUn, n =  l . . . . .  N ,  Uo=UN=O 

(A.1) 

We shall refer to a segment of the chain as regular if at all its points, 
~n = K, and let g t u ( l  ) be the number of chain segments of length l which 

19 One can readily show that in the present case 5~ may always be assumed to be nonnegative, 
so that the condition ~ /> 0 is not a limitation. 
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can be arranged, without overlapping, within the regular segments of the 
particular realization, which are contained in the range (1,N). Then, 
following the reasoning of Ref. 36, we arrive at the following inequality: 

([ ~ ]5 + 1 ) <  VN(a) < N-1921v(nc + 1) N - 192N a 

where a = ff(l - c o s a ) ,  nc = [~r/a- 2T], T is a fixed number larger than 
K 2 +  k2/K 2 -  k 2. By averaging this inequality over all realizations and 
noting that aS0 is equivalent to aS0 we find that 

, 1 / 2  
rr2~ ) a ' /2[1 + o(1)],  a$0 (A.2) lnv(a) =-Ilnpl-~- 

which is the same as Eq. (4.7). 
From this relation, the existence of a nonzero critical temperature 

immediately follows and therefore that of the phase transition in this 
simplest one-dimensional model. Show also that in this model the heat 
capacity and the derivative of the magnetic susceptibility with respect to 
temperature have a jump at T = T~. 

Indeed, from Eq. (2.19) it follows that 

c = - T  3~f - 1 O~" 
~ T  2 2 OT 

But at T < T C ~ = 0; therefore c = 1/2. On the other hand, according 
to Eq. (4.2), 

- 1  
T-2[ 1_  + ,,aa 

3---T r=rc+0 = c k2~ 2 20 a 3 ] 

and therefore c(Tc + 0) < 1/2. Moreover, by using the same equation (4.2) 
and the Cauchy inequality, one can readily show that ~ / O T  < 1/2, and 
therefore c(T) > 0 for all T. 

Further, according to Eq. (2.18), 

~m I --- fl(fflh=0) 
X = --~h- h = o  

provided that f~ va-3da < oo, f2~ pa-4da < oo (see footnote 20). Accord- 
ing to Eq. (2.18), f~ is continuous at zero and negative. Therefore, by the 
same arguments as above, we obtain 

OX _ fO, T =  T ~ - O  
T ~ - o o  < c o n s t < 0 ,  T =  T ~ + 0  

20 AS was mentioned in Section 4, bt(a) also goes to zero exponentially when aS0; however the 
proof of this fact would require a different approach, and we shall omit it. 
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As in the case of ordered antiferromagnet (see Section 3), such behavior of 
X is due to regularity of fl(~" ) near zero, though in the ordered case fl(~) is 
analytical, while in the disordered case it is only infinitely differentiable. 

The technique to obtain the asymptotic form of u(a) we have de- 
scribed also allows us to consider non-one-dimensional models which are 
disordered in one dimension only. The simplest two-dimensional model of 
this sort analogous to the Ising model considered in Ref. 53 is characterized 
by an interaction of the following form: 

B 
. . . .  'n ' =  -~ (3m+l,m' 4- 3m,m'+l) q- ~n3mm'( 3n+l,n ' q- 3n,n'+l) 

Since in the corresponding equation for eigenvalue and eigenvector deter- 
mination, the variables are separated, then 

= 1 ( a  -- ~,o(a - e ) d e / ( 2 B  - e) '/2 (A.3) p ( a )  
do 

where uo(a ) is the eigenvalue distribution function of the one-dimensional 
operator (A.I). From Eq. (A.3) it follows that when aS0, 

u ( a )  <<. u o ( a ) ( 2 a ) ' / 2 / K  

and therefore, in virtue of Eq. (A.2), v(a) in the present two-dimensional 
case also exponentially goes to zero at the spectrum boundary. Therefore in 
particular, 3 X / 3  T and the heat capacity at T = T C have a jump, whereas in 
the corresponding Ising model the heat capacity is a smooth function in the 
vicinity of T = Tc. 

Similar bounds may be obtained also for the more complex d- 
dimensional case considered (by a different method) in Ref. 8, where 

d - I  

~rr" = (~m~m+l,m" "1- ~m-l~m-l,m')~Op" + ~m~mm" ~.d (~p+3k,p' "}- ~P-~k,P') 
k = l  

where r = (p ,m) ,  p E 77 a - i ,  m ~ 7/l, 

~,~ = ~A( I - ~m)( 1 - ~ m + l )  + $B~rn~m+! 

4" ~AB[( 1 -- ~rn)~m+ 1 q- ~m( 1 -- ~m+l) ]  

and fm are independent random quantities assuming values 0 and 1 with 
probability p and 1 - p .  This form of exchange integrals corresponds to 
layer magnets where the nearest-neighbor interaction in each ( d - 1 ) -  
dimensional layer is either ~A or ~ (A and B layers), but the arrangement 
of the layers is random (it is given by a sample of fm values), and the spin 
interaction between neighboring layers of dissimilar type is ~AB- 
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In this case 

p(a ) -  1 fo~ d~pd-,%(a) 7t. d-1 

where %(a) is the distribution function of eigenvatues 
dimensional Jacobian matrix with elements 

~mSm+l,m , + ~m_l~m_l,m , q- ~mSmm , 2 

Therefore, based on Eqs. (1.2) and (1.4) we have 

u(a) < Cla(d - l ) /2exp(  - C2a-1/2),  

(A.4) 

of the one- 

a$O, C1, C2 > 0 

APPENDIX B. PROOF OF EQ. (4.6) 

The relations of Eq. (4.5) are apparently equivalent to the following 
o n e s  �9 

where 

N(t )= fo~176 ), M( t )= foo~e-atdl~(a) (B.1) 

From Eq. (2.21) and the definitions (2.15) and (4.1) of functions 1,(a) and 
/z(a), it follows that 

N(t)=(Poo(t)) ,  M ( t ) =  ( r~Z aP~ (B.2) 

where Prr,(t) is the kernel of operator e -t~i in 12(W). Write Arr, as 

Arr,=Irr,+qrSrr , 
where Irr, are defined in Eq. (4.8) and qr = ~ - ~r,  E z ~ ,  >/0. In virtue of 
nonnegativeness of ~ ,  and the condition (4.9), operator [ is an infinitesimal 
operator of the discontinuous Markov process r(s), s >1 O, r(O) = r' in Z a 
(Ref. 52) (the inhomogeneous Poisson process). Let p~r,(t) be its transition 
probability (it is the solution of equation ~p/~t = - Ip ,  pit=0 = 6~, and 
E~ ( �9 �9 �9 ) is the mathematical expectation operation it generates. Then by 
the Feynman-Kac  formula (54) we have 

It immediately follows from this representation that Prr,(t) >1 0 and conse- 
quently according to Eq. (B.2), 0 < N(t) <<. M(t). Therefore it is sufficient 
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to make sure that M(t) decreases more slowly than t 2+', c > 0. But 
according to Eqs. (B.2) and (B.3). 

Because of the Jensen inequality, 

exPI-fotqr(slds] =exp(-t-~fottqds)< t-'fotdsexp(-tqr(s)) 

and then 

-1  t M(t)<<.t fo ds(E~ ~ exp(--tqr)POr(S)) 
rEZ a 

(B.4) 

But it follows from the property of the space homogeneity in the mean 
[property (2), Section 2], the symmetry of function p~r,(t) and the normaliza- 
tion condition ~ . e ~  pr/(t) = 1 that 

rE?7 a r~2~ a 

After substitution of this relation into Eq. (B.4) we arrive at the following 
inequality: 

M ( I) < ( e -tq~ = ( e - t ( K - ~ r ) )  TM ( 9 . 5 )  

which takes into account that in the case of the nearest-neighbor interac- 
tion considered in Section 4, 

qr = 2 ( g -  ~r+~) 
++-8 

and ~ = 11311 = 2dK in case of independent ~r. Since according to condition 
(4.5), 

(e -t(x-L)) <<. O(t-~), t---~ ~o, ~ > d -1 
then it is just what follows from Eq. (B.5) that integrals in Eq. (4.6) 
converge. 

APPENDIX C. PROOF OF THE CONTINUITY OF FUNCTION/~(a) 
AT ZERO 

The sought continuity is obviously equivalent to relation limt__,~ M(t) 
= 0, where M(t) is the Laplace transform of / , ( a )  entering into Eq. (B.1). 
The representation of M(t) [Eq. (B.2)] and the boundedness of err,(t) [see 
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Eq. (B.3)], show that it is sufficient to prove equality 

lim Pr( t) = 0 
t---)' ~ 

where Pr(t )=~r,~P~r, ( t ) ,  for almost every ~ (i.e., for almost every 
sample of random ~r' variables). But it follows from condition (2) of 
Section 2 and Eq. (B.3) that P~(t) has the following properties: 

(i) 0 < P ~ ( t ) <  1. 
(ii) Pr(t, Ta~o)= Pr+a(t,o~), a E Z a i.e., P~(t,o~) for every t > 0  is a 

homogeneous and ergodic random field [cf. Eq. (2.3)]. 
(iii) ~ e / o t  = - 1 P -  qP, Pit=0 = 1. 
(iv) For every r E Z d, P,(t) is a nondecreasing function of t (remember 

that qr >1 0). 

Denote limt~ ~ Pr(t) existing by condition (iv) by ~r~. Since from the 
boundedness of $~,, and property (iii) follows the boundedness of the 
derivative 3P/St ,  and hence property (iv) implies its zero value in the limit 
t = ~ ,  then ~r~ satisfy equation 

br + qTr = 0 (C.1) 

Apply operation limN__,~ N -  l ~ r  ~ V to this equation. Allowing for Eq. (4.9) 
and the homogeneity of random fields q~ and ~r~, we find that (qr~)  = O. 
Since q~ and ~r~ are nonnegative, it follows that at almost every w, for all 
r ~ Z d, 

q~(o~)qrr(O~ ) = 0 (C.2) 

which together with Eq. (C. 1) means that ~r~ satisfies equation 

~ = 0 (C.3 )  

i.e., is a "harmonic" function. Show that in this case the analog of the 
LiouviUe theorem is valid, i.e., that ~r r is independent of r. To do so, 
multiply Eq. (C.3) by ~r r and apply operation N -  I~rEZ~ to the result. This 
leads to relation 

( 2 ~rr'(qTr--qTr')21 =0'  V r ~ - d  
r' ~ ]~ d 

which because of nonnegativeness of 5~r' is equivalent to equality ~r~ = ~r~, 
for all those pairs (r,r') for which ~ ,  > 0. Therefore, if such pairs may 
connect any two lattice points, then % = const. Such a situation is obvi- 
ously, for example, realized in the case of interaction of nearest neighbors 
and positive exchange integrals (ferromagnetic bond disorder) considered 
in Section 4. 
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But if 7rr(~0 ) does not depend on r, then from Eq. (C.2) it follows that it 
is zero because, with probability 1, qr(c0) is not zero for all r [otherwise, 
qr(0~) would be a nonrandom constant]. 

A P P E N D I X  D, FREE E N E R G Y  OF THE O N E - D I M E N S I O N A L  
D I S O R D E R E D  H E I S E N B E R G  M O D E L  IN THE 
INFINITE SPIN D I M E N S l O N A L I T Y  LIMIT 

The statistical sum of such (classical) model is 

( N SkSk+I) N Z u = ~ exp fl E ~k I-[ ds~ 
Ilsill =n \ 1 1 

where ~k are random variables satisfying conditions (1)-(3) of Section 2, s k, 
n-dimensional vectors, and we assume that s I = SN+ 1" By integrating succes- 
sively over each s k, we find that (3) 

N 

ZN = rI  zn(flnl/2~k), zn(x) = ~  eXaSds 
k = l  JNsll = r  

where a is an arbitrary unit vector. Conditions (1)-(3) of Section 2 enable 
us to apply the ergodic theorem to ln Z u and therefore when N ~  oe the 
free energy of the model at hand, with probability 1, tends to value 2j 

f~i"s = --f l- l( lnzn(l~kH1/2)) 

o r  

s L = (  - fdr( ))~ 
where fo//r(~) is the free energy of the ordered chain of classical Heisenberg 
spins with the exchange integral equal to 5, i.e., - / 3 - l l n  z~(flSn W2). 

Thus the transition from the ordered to the disordered model is carried 
out very simply in this case, by averaging the free energy of the ordered 
model over all possible values of the random exchange integral. 

When calculating the integral entering into the definition of fot/r for 
n---) oo by the Laplace method, we see that (1) 

1 s-s_ _ 1 1 [1 -I- (fl~;)2 1/2 lim n-~oXr- fsp(~)= ] l n2~r -  ] ] 
n - ~ o o  

1 + [1 + 4(f l~)2]  t/2 
1 In  

+~ 2 

21 This fact is a special case of the statement proved in Ref. 42 which says that this property of 
"selfaverageness" belongs to any disordered system with parameters satisfying conditions 
(1)-(4) of Section 2. 
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where  fsp is the free energy of the one-d imens iona l  o rdered  spher ical  mode l  
with neares t -ne ighbor  interact ion.  Therefore,  

l im n- l f f f i s= (f~p(J))~ (D.1) n--,~o 

But the r igh t -hand  side of this re la t ion canno t  be  equal  to the disor-  
dered  spher ical  mode l  free energy for the one-d imens iona l  case as calcu-  
la ted in Sect ion 4. Indeed ,  as was shown in A p p e n d i x  A, even when 
independen t  Jk assume two values,  k / 2 ,  K / 2 ,  the la t ter  mode l  has  a phase  
t ransi t ion due to exponent ia l ly  deereas ing to zero of the funct ion  v(a)  when 
a,l,0. On the other  hand ,  for such the r igh t -hand  side of Eq. (D.1) is as 
follows: 

and  since in the one-d imens iona l  o rdered  spherical  mode l  there  is no phase  
t ransi t ion,  this expression does not  lead  to a t rans i t ion  either. 
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